2 research outputs found

    Sensory substitution for force feedback recovery: A perception experimental study

    Get PDF
    Robotic-assisted surgeries are commonly used today as a more efficient alternative to traditional surgical options. Both surgeons and patients benefit from those systems, as they offer many advantages, including less trauma and blood loss, fewer complications, and better ergonomics. However, a remaining limitation of currently available surgical systems is the lack of force feedback due to the teleoperation setting, which prevents direct interaction with the patient. Once the force information is obtained by either a sensing device or indirectly through vision-based force estimation, a concern arises on how to transmit this information to the surgeon. An attractive alternative is sensory substitution, which allows transcoding information from one sensory modality to present it in a different sensory modality. In the current work, we used visual feedback to convey interaction forces to the surgeon. Our overarching goal was to address the following question: How should interaction forces be displayed to support efficient comprehension by the surgeon without interfering with the surgeon’s perception and workflow during surgery? Until now, the use the visual modality for force feedback has not been carefully evaluated. For this reason, we conducted an experimental study with two aims: (1) to demonstrate the potential benefits of using this modality and (2) to understand the surgeons’ perceptual preferences. The results derived from our study of 28 surgeons revealed a strong positive acceptance of the users (96%) using this modality. Moreover, we found that for surgeons to easily interpret the information, their mental model must be considered, meaning that the design of the visualizations should fit the perceptual and cognitive abilities of the end user. To our knowledge, this is the first time that these principles have been analyzed for exploring sensory substitution in medical robotics. Finally, we provide user-centered recommendations for the design of visual displays for robotic surgical systems.Peer ReviewedPostprint (author's final draft

    Sensory substitution for force feedback recovery: A perception experimental study

    No full text
    Robotic-assisted surgeries are commonly used today as a more efficient alternative to traditional surgical options. Both surgeons and patients benefit from those systems, as they offer many advantages, including less trauma and blood loss, fewer complications, and better ergonomics. However, a remaining limitation of currently available surgical systems is the lack of force feedback due to the teleoperation setting, which prevents direct interaction with the patient. Once the force information is obtained by either a sensing device or indirectly through vision-based force estimation, a concern arises on how to transmit this information to the surgeon. An attractive alternative is sensory substitution, which allows transcoding information from one sensory modality to present it in a different sensory modality. In the current work, we used visual feedback to convey interaction forces to the surgeon. Our overarching goal was to address the following question: How should interaction forces be displayed to support efficient comprehension by the surgeon without interfering with the surgeon’s perception and workflow during surgery? Until now, the use the visual modality for force feedback has not been carefully evaluated. For this reason, we conducted an experimental study with two aims: (1) to demonstrate the potential benefits of using this modality and (2) to understand the surgeons’ perceptual preferences. The results derived from our study of 28 surgeons revealed a strong positive acceptance of the users (96%) using this modality. Moreover, we found that for surgeons to easily interpret the information, their mental model must be considered, meaning that the design of the visualizations should fit the perceptual and cognitive abilities of the end user. To our knowledge, this is the first time that these principles have been analyzed for exploring sensory substitution in medical robotics. Finally, we provide user-centered recommendations for the design of visual displays for robotic surgical systems.Peer Reviewe
    corecore